Is 159 prime or composite?

Prime Factorization Calculator

Enter the integer number you want to get its prime factors:
Ex.: 2, 3, 4, 11, 10225, etc.

Prime factorization result:

The number 159 is a composite number so, it is possible to factorize it. In other words, 159 can be divided by 1, by itself and at least by 3, and 53. A composite number is a positive integer that has at least one positive divisor other than one or the number itself. In other words, a composite number is any integer greater than one that is not a prime number.

The prime factorization of 159 = 3•53.

The prime factors of 159 are 3, and 53.

Factor tree or prime decomposition for 159

As 159 is a composite number, we can draw its factor tree:

Here is the answer to questions like: Is 159 prime or composite? or is 159 a prime or a composite number?

Use the Prime Factorization tool above to discover if any given number is prime or composite and in this case calculate the its prime factors. See also in this web page a Prime Factorization Chart with all primes from 1 to 1000.

What is prime factorization?

Definition of prime factorization

The prime factorization is the decomposition of a composite number into a product of prime factors that, if multiplied, recreate the original number. Factors by definition are the numbers that multiply to create another number. A prime number is an integer greater than one which is divided only by one and by itself. For example, the only divisors of 7 are 1 and 7, so 7 is a prime number, while the number 72 has divisors deived from 23•32 like 2, 3, 4, 6, 8, 12, 24 ... and 72 itself, making 72 not a prime number. Note the the only "prime" factors of 72 are 2 and 3 which are prime numbers.

Prime factorization example 1

Let's find the prime factorization of 72.

Solution 1

Start with the smallest prime number that divides into 72, in this case 2. We can write 72 as:
72 = 2 x 36
Now find the smallest prime number that divides into 36. Again we can use 2, and write the 36 as 2 x 18, to give.
72 = 2 x 2 x 18
18 also divides by 2 (18 = 2 x 9), so we have:
72 = 2 x 2 x 2 x 9
9 divides by 3 (9 = 3 x 3), so we have:
72 = 2 x 2 x 2 x 3 x 3
2, 2, 2, 3 and 3 are all prime numbers, so we have our answer.

In short, we would write the solution as:
72 = 2 x 36
72 = 2 x 2 x 18
72 = 2 x 2 x 2 x 9
72 = 2 x 2 x 2 x 3 x 3
72 = 23 x 32 (prime factorization exponential form)

Solution 2

Using a factor tree:

  • Procedure:
  • Find 2 factors of the number;
  • Look at the 2 factors and determine if at least one of them is not prime;
  • If it is not a prime factor it;
  • Repeat this process until all factors are prime.

See how to factor the number 72:


     72
    /  \
   2   36
      /  \
     2   18
        /  \
       2    9
          /  \
         3    3

 72 is not prime --> divide by 2

 36 is not prime --> divide by 2

 18 is not prime --> divide by 2

  9 is not prime --> divide by 3

  3 and 3 are prime --> stop

Taking the left-hand numbers and the right-most number of the last row (dividers) an multiplying then, we have

72 = 2 x 2 x 2 x 3 x 3

72 = 23 x 32 (prime factorization exponential form)

Note that these dividers are the prime factors. They are also called the leaves of the factor tree.

Prime factorization example 2

See how to factor the number 588:


    588
    /  \
   2  294
      /  \
     2  147
        /  \
       3   49
          /  \
         7    7

 588 is not prime --> divide by 2

 294 is not prime --> divide by 2

 147 is not prime --> divide by 3

  49 is not prime --> divide by 7

   7 and 7 are prime --> stop

Taking the left-hand numbers and the right-most number of the last row (dividers) an multiplying then, we have

588 = 2 x 2 x 3 x 7 x 7
588 = 22 x 3 x 72 (prime factorization exponential form)

Prime Factorization Chart 1-1000

nPrime
Factorization
2 =2
3 =3
4 =2•2
5 =5
6 =2•3
7 =7
8 =2•2•2
9 =3•3
10 =2•5
11 =11
12 =2•2•3
13 =13
14 =2•7
15 =3•5
16 =2•2•2•2
17 =17
18 =2•3•3
19 =19
20 =2•2•5
21 =3•7
22 =2•11
23 =23
24 =2•2•2•3
25 =5•5
26 =2•13
27 =3•3•3
28 =2•2•7
29 =29
30 =2•3•5
31 =31
32 =2•2•2•2•2
33 =3•11
34 =2•17
35 =5•7
36 =2•2•3•3
37 =37
38 =2•19
39 =3•13
40 =2•2•2•5
41 =41
42 =2•3•7
43 =43
44 =2•2•11
45 =3•3•5
46 =2•23
47 =47
48 =2•2•2•2•3
49 =7•7
50 =2•5•5
51 =3•17
52 =2•2•13
53 =53
54 =2•3•3•3
55 =5•11
56 =2•2•2•7
57 =3•19
58 =2•29
59 =59
60 =2•2•3•5
61 =61
62 =2•31
63 =3•3•7
64 =2•2•2•2•2•2
65 =5•13
66 =2•3•11
67 =67
68 =2•2•17
69 =3•23
70 =2•5•7
71 =71
72 =2•2•2•3•3
73 =73
74 =2•37
75 =3•5•5
76 =2•2•19
77 =7•11
78 =2•3•13
79 =79
80 =2•2•2•2•5
81 =3•3•3•3
82 =2•41
83 =83
84 =2•2•3•7
85 =5•17
86 =2•43
87 =3•29
88 =2•2•2•11
89 =89
90 =2•3•3•5
91 =7•13
92 =2•2•23
93 =3•31
94 =2•47
95 =5•19
96 =2•2•2•2•2•3
97 =97
98 =2•7•7
99 =3•3•11
100 =2•2•5•5
101 =101
102 =2•3•17
103 =103
104 =2•2•2•13
105 =3•5•7
106 =2•53
107 =107
108 =2•2•3•3•3
109 =109
110 =2•5•11
111 =3•37
112 =2•2•2•2•7
113 =113
114 =2•3•19
115 =5•23
116 =2•2•29
117 =3•3•13
118 =2•59
119 =7•17
120 =2•2•2•3•5
121 =11•11
122 =2•61
123 =3•41
124 =2•2•31
125 =5•5•5
126 =2•3•3•7
127 =127
128 =2•2•2•2•2•2•2
129 =3•43
130 =2•5•13
131 =131
132 =2•2•3•11
133 =7•19
134 =2•67
135 =3•3•3•5
136 =2•2•2•17
137 =137
138 =2•3•23
139 =139
140 =2•2•5•7
141 =3•47
142 =2•71
143 =11•13
144 =2•2•2•2•3•3
145 =5•29
146 =2•73
147 =3•7•7
148 =2•2•37
149 =149
150 =2•3•5•5
151 =151
152 =2•2•2•19
153 =3•3•17
154 =2•7•11
155 =5•31
156 =2•2•3•13
157 =157
158 =2•79
159 =3•53
160 =2•2•2•2•2•5
161 =7•23
162 =2•3•3•3•3
163 =163
164 =2•2•41
165 =3•5•11
166 =2•83
167 =167
168 =2•2•2•3•7
169 =13•13
170 =2•5•17
171 =3•3•19
172 =2•2•43
173 =173
174 =2•3•29
175 =5•5•7
176 =2•2•2•2•11
177 =3•59
178 =2•89
179 =179
180 =2•2•3•3•5
181 =181
182 =2•7•13
183 =3•61
184 =2•2•2•23
185 =5•37
186 =2•3•31
187 =11•17
188 =2•2•47
189 =3•3•3•7
190 =2•5•19
191 =191
192 =2•2•2•2•2•2•3
193 =193
194 =2•97
195 =3•5•13
196 =2•2•7•7
197 =197
198 =2•3•3•11
199 =199
200 =2•2•2•5•5
201 =3•67
202 =2•101
203 =7•29
204 =2•2•3•17
205 =5•41
206 =2•103
207 =3•3•23
208 =2•2•2•2•13
209 =11•19
210 =2•3•5•7
211 =211
212 =2•2•53
213 =3•71
214 =2•107
215 =5•43
216 =2•2•2•3•3•3
217 =7•31
218 =2•109
219 =3•73
220 =2•2•5•11
221 =13•17
222 =2•3•37
223 =223
224 =2•2•2•2•2•7
225 =3•3•5•5
226 =2•113
227 =227
228 =2•2•3•19
229 =229
230 =2•5•23
231 =3•7•11
232 =2•2•2•29
233 =233
234 =2•3•3•13
235 =5•47
236 =2•2•59
237 =3•79
238 =2•7•17
239 =239
240 =2•2•2•2•3•5
241 =241
242 =2•11•11
243 =3•3•3•3•3
244 =2•2•61
245 =5•7•7
246 =2•3•41
247 =13•19
248 =2•2•2•31
249 =3•83
250 =2•5•5•5
nPrime
Factorization
251 =251
252 =2•2•3•3•7
253 =11•23
254 =2•127
255 =3•5•17
256 =2•2•2•2•2•2•2•2
257 =257
258 =2•3•43
259 =7•37
260 =2•2•5•13
261 =3•3•29
262 =2•131
263 =263
264 =2•2•2•3•11
265 =5•53
266 =2•7•19
267 =3•89
268 =2•2•67
269 =269
270 =2•3•3•3•5
271 =271
272 =2•2•2•2•17
273 =3•7•13
274 =2•137
275 =5•5•11
276 =2•2•3•23
277 =277
278 =2•139
279 =3•3•31
280 =2•2•2•5•7
281 =281
282 =2•3•47
283 =283
284 =2•2•71
285 =3•5•19
286 =2•11•13
287 =7•41
288 =2•2•2•2•2•3•3
289 =17•17
290 =2•5•29
291 =3•97
292 =2•2•73
293 =293
294 =2•3•7•7
295 =5•59
296 =2•2•2•37
297 =3•3•3•11
298 =2•149
299 =13•23
300 =2•2•3•5•5
301 =7•43
302 =2•151
303 =3•101
304 =2•2•2•2•19
305 =5•61
306 =2•3•3•17
307 =307
308 =2•2•7•11
309 =3•103
310 =2•5•31
311 =311
312 =2•2•2•3•13
313 =313
314 =2•157
315 =3•3•5•7
316 =2•2•79
317 =317
318 =2•3•53
319 =11•29
320 =2•2•2•2•2•2•5
321 =3•107
322 =2•7•23
323 =17•19
324 =2•2•3•3•3•3
325 =5•5•13
326 =2•163
327 =3•109
328 =2•2•2•41
329 =7•47
330 =2•3•5•11
331 =331
332 =2•2•83
333 =3•3•37
334 =2•167
335 =5•67
336 =2•2•2•2•3•7
337 =337
338 =2•13•13
339 =3•113
340 =2•2•5•17
341 =11•31
342 =2•3•3•19
343 =7•7•7
344 =2•2•2•43
345 =3•5•23
346 =2•173
347 =347
348 =2•2•3•29
349 =349
350 =2•5•5•7
351 =3•3•3•13
352 =2•2•2•2•2•11
353 =353
354 =2•3•59
355 =5•71
356 =2•2•89
357 =3•7•17
358 =2•179
359 =359
360 =2•2•2•3•3•5
361 =19•19
362 =2•181
363 =3•11•11
364 =2•2•7•13
365 =5•73
366 =2•3•61
367 =367
368 =2•2•2•2•23
369 =3•3•41
370 =2•5•37
371 =7•53
372 =2•2•3•31
373 =373
374 =2•11•17
375 =3•5•5•5
376 =2•2•2•47
377 =13•29
378 =2•3•3•3•7
379 =379
380 =2•2•5•19
381 =3•127
382 =2•191
383 =383
384 =2•2•2•2•2•2•2•3
385 =5•7•11
386 =2•193
387 =3•3•43
388 =2•2•97
389 =389
390 =2•3•5•13
391 =17•23
392 =2•2•2•7•7
393 =3•131
394 =2•197
395 =5•79
396 =2•2•3•3•11
397 =397
398 =2•199
399 =3•7•19
400 =2•2•2•2•5•5
401 =401
402 =2•3•67
403 =13•31
404 =2•2•101
405 =3•3•3•3•5
406 =2•7•29
407 =11•37
408 =2•2•2•3•17
409 =409
410 =2•5•41
411 =3•137
412 =2•2•103
413 =7•59
414 =2•3•3•23
415 =5•83
416 =2•2•2•2•2•13
417 =3•139
418 =2•11•19
419 =419
420 =2•2•3•5•7
421 =421
422 =2•211
423 =3•3•47
424 =2•2•2•53
425 =5•5•17
426 =2•3•71
427 =7•61
428 =2•2•107
429 =3•11•13
430 =2•5•43
431 =431
432 =2•2•2•2•3•3•3
433 =433
434 =2•7•31
435 =3•5•29
436 =2•2•109
437 =19•23
438 =2•3•73
439 =439
440 =2•2•2•5•11
441 =3•3•7•7
442 =2•13•17
443 =443
444 =2•2•3•37
445 =5•89
446 =2•223
447 =3•149
448 =2•2•2•2•2•2•7
449 =449
450 =2•3•3•5•5
451 =11•41
452 =2•2•113
453 =3•151
454 =2•227
455 =5•7•13
456 =2•2•2•3•19
457 =457
458 =2•229
459 =3•3•3•17
460 =2•2•5•23
461 =461
462 =2•3•7•11
463 =463
464 =2•2•2•2•29
465 =3•5•31
466 =2•233
467 =467
468 =2•2•3•3•13
469 =7•67
470 =2•5•47
471 =3•157
472 =2•2•2•59
473 =11•43
474 =2•3•79
475 =5•5•19
476 =2•2•7•17
477 =3•3•53
478 =2•239
479 =479
480 =2•2•2•2•2•3•5
481 =13•37
482 =2•241
483 =3•7•23
484 =2•2•11•11
485 =5•97
486 =2•3•3•3•3•3
487 =487
488 =2•2•2•61
489 =3•163
490 =2•5•7•7
491 =491
492 =2•2•3•41
493 =17•29
494 =2•13•19
495 =3•3•5•11
496 =2•2•2•2•31
497 =7•71
498 =2•3•83
499 =499
500 =2•2•5•5•5
nPrime
Factorization
501 =3•167
502 =2•251
503 =503
504 =2•2•2•3•3•7
505 =5•101
506 =2•11•23
507 =3•13•13
508 =2•2•127
509 =509
510 =2•3•5•17
511 =7•73
512 =2•2•2•2•2•2•2•2•2
513 =3•3•3•19
514 =2•257
515 =5•103
516 =2•2•3•43
517 =11•47
518 =2•7•37
519 =3•173
520 =2•2•2•5•13
521 =521
522 =2•3•3•29
523 =523
524 =2•2•131
525 =3•5•5•7
526 =2•263
527 =17•31
528 =2•2•2•2•3•11
529 =23•23
530 =2•5•53
531 =3•3•59
532 =2•2•7•19
533 =13•41
534 =2•3•89
535 =5•107
536 =2•2•2•67
537 =3•179
538 =2•269
539 =7•7•11
540 =2•2•3•3•3•5
541 =541
542 =2•271
543 =3•181
544 =2•2•2•2•2•17
545 =5•109
546 =2•3•7•13
547 =547
548 =2•2•137
549 =3•3•61
550 =2•5•5•11
551 =19•29
552 =2•2•2•3•23
553 =7•79
554 =2•277
555 =3•5•37
556 =2•2•139
557 =557
558 =2•3•3•31
559 =13•43
560 =2•2•2•2•5•7
561 =3•11•17
562 =2•281
563 =563
564 =2•2•3•47
565 =5•113
566 =2•283
567 =3•3•3•3•7
568 =2•2•2•71
569 =569
570 =2•3•5•19
571 =571
572 =2•2•11•13
573 =3•191
574 =2•7•41
575 =5•5•23
576 =2•2•2•2•2•2•3•3
577 =577
578 =2•17•17
579 =3•193
580 =2•2•5•29
581 =7•83
582 =2•3•97
583 =11•53
584 =2•2•2•73
585 =3•3•5•13
586 =2•293
587 =587
588 =2•2•3•7•7
589 =19•31
590 =2•5•59
591 =3•197
592 =2•2•2•2•37
593 =593
594 =2•3•3•3•11
595 =5•7•17
596 =2•2•149
597 =3•199
598 =2•13•23
599 =599
600 =2•2•2•3•5•5
601 =601
602 =2•7•43
603 =3•3•67
604 =2•2•151
605 =5•11•11
606 =2•3•101
607 =607
608 =2•2•2•2•2•19
609 =3•7•29
610 =2•5•61
611 =13•47
612 =2•2•3•3•17
613 =613
614 =2•307
615 =3•5•41
616 =2•2•2•7•11
617 =617
618 =2•3•103
619 =619
620 =2•2•5•31
621 =3•3•3•23
622 =2•311
623 =7•89
624 =2•2•2•2•3•13
625 =5•5•5•5
626 =2•313
627 =3•11•19
628 =2•2•157
629 =17•37
630 =2•3•3•5•7
631 =631
632 =2•2•2•79
633 =3•211
634 =2•317
635 =5•127
636 =2•2•3•53
637 =7•7•13
638 =2•11•29
639 =3•3•71
640 =2•2•2•2•2•2•2•5
641 =641
642 =2•3•107
643 =643
644 =2•2•7•23
645 =3•5•43
646 =2•17•19
647 =647
648 =2•2•2•3•3•3•3
649 =11•59
650 =2•5•5•13
651 =3•7•31
652 =2•2•163
653 =653
654 =2•3•109
655 =5•131
656 =2•2•2•2•41
657 =3•3•73
658 =2•7•47
659 =659
660 =2•2•3•5•11
661 =661
662 =2•331
663 =3•13•17
664 =2•2•2•83
665 =5•7•19
666 =2•3•3•37
667 =23•29
668 =2•2•167
669 =3•223
670 =2•5•67
671 =11•61
672 =2•2•2•2•2•3•7
673 =673
674 =2•337
675 =3•3•3•5•5
676 =2•2•13•13
677 =677
678 =2•3•113
679 =7•97
680 =2•2•2•5•17
681 =3•227
682 =2•11•31
683 =683
684 =2•2•3•3•19
685 =5•137
686 =2•7•7•7
687 =3•229
688 =2•2•2•2•43
689 =13•53
690 =2•3•5•23
691 =691
692 =2•2•173
693 =3•3•7•11
694 =2•347
695 =5•139
696 =2•2•2•3•29
697 =17•41
698 =2•349
699 =3•233
700 =2•2•5•5•7
701 =701
702 =2•3•3•3•13
703 =19•37
704 =2•2•2•2•2•2•11
705 =3•5•47
706 =2•353
707 =7•101
708 =2•2•3•59
709 =709
710 =2•5•71
711 =3•3•79
712 =2•2•2•89
713 =23•31
714 =2•3•7•17
715 =5•11•13
716 =2•2•179
717 =3•239
718 =2•359
719 =719
720 =2•2•2•2•3•3•5
721 =7•103
722 =2•19•19
723 =3•241
724 =2•2•181
725 =5•5•29
726 =2•3•11•11
727 =727
728 =2•2•2•7•13
729 =3•3•3•3•3•3
730 =2•5•73
731 =17•43
732 =2•2•3•61
733 =733
734 =2•367
735 =3•5•7•7
736 =2•2•2•2•2•23
737 =11•67
738 =2•3•3•41
739 =739
740 =2•2•5•37
741 =3•13•19
742 =2•7•53
743 =743
744 =2•2•2•3•31
745 =5•149
746 =2•373
747 =3•3•83
748 =2•2•11•17
749 =7•107
750 =2•3•5•5•5
nPrime
Factorization
751 =751
752 =2•2•2•2•47
753 =3•251
754 =2•13•29
755 =5•151
756 =2•2•3•3•3•7
757 =757
758 =2•379
759 =3•11•23
760 =2•2•2•5•19
761 =761
762 =2•3•127
763 =7•109
764 =2•2•191
765 =3•3•5•17
766 =2•383
767 =13•59
768 =2•2•2•2•2•2•2•2•3
769 =769
770 =2•5•7•11
771 =3•257
772 =2•2•193
773 =773
774 =2•3•3•43
775 =5•5•31
776 =2•2•2•97
777 =3•7•37
778 =2•389
779 =19•41
780 =2•2•3•5•13
781 =11•71
782 =2•17•23
783 =3•3•3•29
784 =2•2•2•2•7•7
785 =5•157
786 =2•3•131
787 =787
788 =2•2•197
789 =3•263
790 =2•5•79
791 =7•113
792 =2•2•2•3•3•11
793 =13•61
794 =2•397
795 =3•5•53
796 =2•2•199
797 =797
798 =2•3•7•19
799 =17•47
800 =2•2•2•2•2•5•5
801 =3•3•89
802 =2•401
803 =11•73
804 =2•2•3•67
805 =5•7•23
806 =2•13•31
807 =3•269
808 =2•2•2•101
809 =809
810 =2•3•3•3•3•5
811 =811
812 =2•2•7•29
813 =3•271
814 =2•11•37
815 =5•163
816 =2•2•2•2•3•17
817 =19•43
818 =2•409
819 =3•3•7•13
820 =2•2•5•41
821 =821
822 =2•3•137
823 =823
824 =2•2•2•103
825 =3•5•5•11
826 =2•7•59
827 =827
828 =2•2•3•3•23
829 =829
830 =2•5•83
831 =3•277
832 =2•2•2•2•2•2•13
833 =7•7•17
834 =2•3•139
835 =5•167
836 =2•2•11•19
837 =3•3•3•31
838 =2•419
839 =839
840 =2•2•2•3•5•7
841 =29•29
842 =2•421
843 =3•281
844 =2•2•211
845 =5•13•13
846 =2•3•3•47
847 =7•11•11
848 =2•2•2•2•53
849 =3•283
850 =2•5•5•17
851 =23•37
852 =2•2•3•71
853 =853
854 =2•7•61
855 =3•3•5•19
856 =2•2•2•107
857 =857
858 =2•3•11•13
859 =859
860 =2•2•5•43
861 =3•7•41
862 =2•431
863 =863
864 =2•2•2•2•2•3•3•3
865 =5•173
866 =2•433
867 =3•17•17
868 =2•2•7•31
869 =11•79
870 =2•3•5•29
871 =13•67
872 =2•2•2•109
873 =3•3•97
874 =2•19•23
875 =5•5•5•7
876 =2•2•3•73
877 =877
878 =2•439
879 =3•293
880 =2•2•2•2•5•11
881 =881
882 =2•3•3•7•7
883 =883
884 =2•2•13•17
885 =3•5•59
886 =2•443
887 =887
888 =2•2•2•3•37
889 =7•127
890 =2•5•89
891 =3•3•3•3•11
892 =2•2•223
893 =19•47
894 =2•3•149
895 =5•179
896 =2•2•2•2•2•2•2•7
897 =3•13•23
898 =2•449
899 =29•31
900 =2•2•3•3•5•5
901 =17•53
902 =2•11•41
903 =3•7•43
904 =2•2•2•113
905 =5•181
906 =2•3•151
907 =907
908 =2•2•227
909 =3•3•101
910 =2•5•7•13
911 =911
912 =2•2•2•2•3•19
913 =11•83
914 =2•457
915 =3•5•61
916 =2•2•229
917 =7•131
918 =2•3•3•3•17
919 =919
920 =2•2•2•5•23
921 =3•307
922 =2•461
923 =13•71
924 =2•2•3•7•11
925 =5•5•37
926 =2•463
927 =3•3•103
928 =2•2•2•2•2•29
929 =929
930 =2•3•5•31
931 =7•7•19
932 =2•2•233
933 =3•311
934 =2•467
935 =5•11•17
936 =2•2•2•3•3•13
937 =937
938 =2•7•67
939 =3•313
940 =2•2•5•47
941 =941
942 =2•3•157
943 =23•41
944 =2•2•2•2•59
945 =3•3•3•5•7
946 =2•11•43
947 =947
948 =2•2•3•79
949 =13•73
950 =2•5•5•19
951 =3•317
952 =2•2•2•7•17
953 =953
954 =2•3•3•53
955 =5•191
956 =2•2•239
957 =3•11•29
958 =2•479
959 =7•137
960 =2•2•2•2•2•2•3•5
961 =31•31
962 =2•13•37
963 =3•3•107
964 =2•2•241
965 =5•193
966 =2•3•7•23
967 =967
968 =2•2•2•11•11
969 =3•17•19
970 =2•5•97
971 =971
972 =2•2•3•3•3•3•3
973 =7•139
974 =2•487
975 =3•5•5•13
976 =2•2•2•2•61
977 =977
978 =2•3•163
979 =11•89
980 =2•2•5•7•7
981 =3•3•109
982 =2•491
983 =983
984 =2•2•2•3•41
985 =5•197
986 =2•17•29
987 =3•7•47
988 =2•2•13•19
989 =23•43
990 =2•3•3•5•11
991 =991
992 =2•2•2•2•2•31
993 =3•331
994 =2•7•71
995 =5•199
996 =2•2•3•83
997 =997
998 =2•499
999 =3•3•3•37
1000 =2•2•2•5•5•5

Prime Factorization Calculator

Prime Factorization Calculator

Please link to this page! Just right click on the above image, choose copy link address, then past it in your HTML.

Disclaimer

While every effort is made to ensure the accuracy of the information provided on this website, neither this website nor its authors are responsible for any errors or omissions. Therefore, the contents of this site are not suitable for any use involving risk to health, finances or property.