Contact Us!

Please get in touch with us if you:

  1. Have any suggestions
  2. Have any questions
  3. Have found an error/bug
  4. Anything else ...

To contact us, please .

Multiples of 142

Here you will find answers to questions like: Multiples of 142 or what are the multiples of 142?

Use the multiples calculator below to find the multiples of any integer. See also on this page a multiplication table of any number you wish.


Multiples Calculator

The number:
How many multiples?
Result:
Result ...

What is a multiple in math?

The multiple of a number is the product of this number by any other number (0, 1, 2, 3, ...).

Our calculator works on the set of natural numbers, but there are multiples in the set of numbers, integers, real, etc. Therefore, a multiple can also be negative.

For example the number 426 Can be divided by 3 without a reminder. Like this, 426 is multiple of 142, because, 3 vezes 142 é igual a 426. In other words, we can say that 426 is multiple of 3, because there is a natural - 3 - which multiplied by 142 is equal to 426. The statement '426 is multiple of 3' is equivalent '426 is divisible by 3', or that 3 is a divider of 426.

So to find the multiples of 142, simply multiply this number by a number of the set of natural numbers as many times as we want. See below how to do this for the number 142:

  • 142 x 0 = 0 so, 0 is a multiple of 142.
  • 142 x 1 = 142 so, 142 is a multiple of 142.
  • 142 x 2 = 284 so, 284 is a multiple of 142.
  • 142 x 3 = 426 so, 426 is a multiple of 142.
  • 142 x 4 = 568 so, 568 is a multiple of 142.
  • The first 5 multiples of 142 are: 0, 142, 284, 426, 568.

    Fatos Sobre Multiplos

    • Any number is a multiple of itself (n x 1 = n).
    • Any number is a multiple of 1 (1 x n = n).
    • Zero is a multiple of any number (0 x n = 0).
    • The set of multiples of a number is an infinite set, since we can get this by multiplying the number given by all natural numbers.
    • The set of multiples of n can be represented by M n = {0 x n, 1 x n, 2 x n, 3 x n, 4 x n, ...} (where n is any natural). For example: The set of multiples of 142 is represented as M 142 = {0, 142,0,0,0, ...}.

    Common Multiples

    If two numbers are multiplied, then the product is a common multiple of these two numbers.

    Example: if two numbers 142 and 3 are multiplied, then the result 426 is a common multiple of 142 and 3.

    Note: The product of these two numbers is not necessarily the least common multiple-LCM of these numbers.

    Multiples Table

    • 1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
    • 2: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40
    • 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60
    • 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80
    • 5: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100
    • 6: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120
    • 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 133, 140
    • 8: 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160
    • 9: 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 135, 144, 153, 162, 171, 180
    • 10: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200
    • 11: 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 220
    • 12: 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240
    • 13: 13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 156, 169, 182, 195, 208, 221, 234, 247, 260
    • 14: 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 182, 196, 210, 224, 238, 252, 266, 280
    • 15: 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300

    Disclaimer

    While every effort is made to ensure the accuracy of the information provided on this website, we offer no warranties in relation to these informations.