What are the first 7 multiples of 34
What is a multiple in math?
The multiple of a number is the product of this number by any other number (0, 1, 2, 3, ...).
Our calculator works on the set of natural numbers, but there are multiples in the set of numbers, integers, real, etc. Therefore, a multiple can also be negative.
For example, 102 can be divided by 3 without a reminder. Like this, 102 is a multiple of 34 because 3 times 34 equals 102. In other words, we can say that 102 is a multiple of 3 because there is a natural - 3 - which multiplied by 34 equals 102. The statement '102 is a multiple of 3' is equivalent to '102 is divisible by 3', or that 3 is a divider of 102.
So, to find the multiples of 34, simply multiply this number by a number of the set of natural numbers as many times as we want. See below how to do it for the number 34:
- 34 x 0 = 0, so 0 is a multiple of 34.
- 34 x 1 = 34, so 34 is a multiple of 34.
- 34 x 2 = 68, so 68 is a multiple of 34.
- 34 x 3 = 102, so 102 is a multiple of 34.
- 34 x 4 = 136, so 136 is a multiple of 34.
- 34 x 5 = 170, so 170 is a multiple of 34.
- 34 x 6 = 204, so 204 is a multiple of 34.
The first 7 multiples of 34 are: 0, 34, 68, 102, 136, 170, 204.
Facts About Multiples
- Any number is a multiple of itself (n x 1 = n).
- Any number is a multiple of 1 (1 x n = n).
- Zero is a multiple of any number (0 x n = 0).
- The set of multiples of a number is an infinite set since we can get this by multiplying the number given by all the natural numbers. The set of multiples of n can be represented by M n = {0 x n, 1 x n, 2 x n, 3 x n, 4 x n, ...} (where n is any natural). For example, the set of multiples of 34 is represented as M 34 Sub> = {0, 34,68,102,136, ...}.
Common Multiples
If two numbers are multiplied, then the product is a common multiple of these two numbers.
Example: if two numbers, 34 and 3, are multiplied, then the result, 102, is a common multiple of 34 and 3.
Note: The product of these two numbers is not necessarily the least common multiple-LCM of these numbers.
Multiples Table
- 1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- 2: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40
- 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60
- 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80
- 5: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100
- 6: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120
- 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 133, 140
- 8: 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160
- 9: 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 135, 144, 153, 162, 171, 180
- 10: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200
- 11: 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 220
- 12: 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240
- 13: 13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 156, 169, 182, 195, 208, 221, 234, 247, 260
- 14: 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 182, 196, 210, 224, 238, 252, 266, 280
- 15: 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300